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Calculation of Eigenmodes in a
Nonperiodic Corrugated Waveguide

loannis G. TigelisMember, IEEE Marco Pedrozzi, P. G. Cottis, and John L. Vomvoridis

Abstract—A theoretical technique for determining the disper- loss tangent generally to about 0.1, although values as high as
sion relation, the electromagnetic field components, and the qual- 0.33 have also been reported [1].
ity factor of a dielectric-loaded nonperiodic corrugated waveguide 1, yhe sirycture just described, replacing the dielectric rings
is presented for the case of azimuthally symmetric TM waves. b ind . ith el icall | di . d
The Floguet theorem is used to express the field distribution in PY Vacuum indentations with electrically equal dimensions an
the vacuum region, while an eigenfunction expansion is employed distributing the losses on the wall (rather than in the dielectric
in each dielectric region, with the appropriate boundary condi- volume), the electrodynamically identical corrugated wave-
tions applied at the interfaces, leading to an infinite system of gyide is produced. Such structures are widely used to distribute
equations. This system is solved numerically by truncation, while o jntaraction of the electrons with the electromagnetic waves
the convergence of the solution is examined with the number of . .
spatial harmonics. Based on this formulation, a numerical code, 2/0ng the entire structure of a traveling-wave tube (TWT) and
called FISHBONE-TM, is developed and its results are compared t0 avoid reflections and oscillations in the extraction sections

with those obtained with an established codeGASCADE) based [4] or as mode converters [5]. Of course, in spite of their

on the scattering-matrix method. equivalence, these two applications of corrugated waveguides
Index Terms— Bloch harmonics, corrugated waveguide, are serving radically different purposes: to generate a wave in
gyrotron-beam tunnel. the TWT and to suppress any wave growth in the gyrotron-
beam tunnel.

In either of those realizations of a corrugated waveguide
) . (i.e., in the gyrotron-beam tunnel and in the TWT), the
T HE GYROTRON is an inherently fastwave electrongiciyre is typically periodic with the period consisting of
beam device which approximately operates at the gyne metal ring and one dielectric ring (or one indentation).
rofrequency of the electrons (with a small Doppler shift) ieriodic-guiding structures are employed in microstrip-array
an axial magnetostatic field. For high-power performancgy,,.wave structure (SWS) [6], in gyro traveling-wave am-
the properties of the elect'ron. beam (in particular, the rat{ﬂifier (TWA) operations [7], or in TWT's and oscillators
p1/p of transverse to longitudinal momentum and the currep] ‘191, Their dispersive characteristics have been analyzed
density carried by the beam) need to be adjusted from e\ in the frequency domain [7]-[10] or in the time domain
values produced by the electron gun to those required in %]. The field analysis of such a structure is straightforward

gyrptron cavity. This is accomplished in the beam tunnel (t $2]—[14]: The Floquet theorem is invoked to represent the
region between the electron gun and the gyrotron cavit ropagating wave in the inner region as an infinite sum of

by increasing the axial magnetostatic field. To prevent thg,, components, while the fields in the dielectric rings

gyrotron interaction from occurring pr_ematurely in the Iatte(or the indentations) are represented by an infinite sum of
Efarrt] of the bheam Lunnt;l (wherehthe rafio/p regchels vagueshthe corresponding standing eigenwaves. Then, the appropriate
igh enough) rather than in the gyrotron cavity [1}-[3], t %oundary conditions at the interface of the inner region with

mtetno_r lw‘?‘”ts |°f tze t?te;]am tturlmgl aret Ime?l Wt'th a IotSSYhe dielectric rings (or indentations) and with the conducting
matenal, interiaced with metal Tings 1o Collect any Stay, 5 are imposed. Application of the orthogonal properties
electrons and prevent them from depositing on the dielectr the eigenfunctions yields the dispersion relatioft) in

For good behavior of the lossy material in the presence of t fe form of a determinantal equation of infinite size, which is

high-quality vacuum of the tube, the available choices limit tr}?uncated to finite size for numerical calculations
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Fig. 1. The geometry of a cylindrical nonperiodic corrugated waveguide.

amplitude and spatial distribution of the resonant componestte outwards an@ inwards). For a periodic system it suffices
of the wave to calculate its coupling to the electron beam. to take the special casE = 1.

The geometry of a cylindrical nonperiodic corrugated wave- Two distinct advantages can be expected from the approach
guide is shown in Fig. 1, where the cylindrical coordinatedeveloped in the present paper: First, a smaller number of
(p,p,z) are employed. Over a total lengthy, the inner numerical operations is involved. (However, not in the ratio
vacuum region extends radially to the radjus= «. Beyond (P + 1)/(2P + 1) = 0.5, since the long vacuum region is
this radius are located the dielectric rings (fram= z; to expected to require more terms for convergence.) Second, if
z = z + b;) with outer radiusD;, thicknessb;(<L;), and the information obtained is to be used eventually to study
complex permittivitye;. The conductor extends both beyondhe interaction of the guided waves with an electron beam,
(for p > D;) and between (fop > «, whenz; +b; < 2 < z; + then the dispersion relatian(k) and the relative amplitudes
L; = z;,1) the dielectric rings. Lack of periodicity means thabf the various axial modes are the only information actually
one or more of the quantitie®;, ¢;, L;, andb; are distributed needed. In our approach, this information is obtained in the
unevenly. second step, and the third step is (in this context) completely

An analytical approach to calculate the wave field structuredundant.
in a geometry like that of Fig. 1 (i.e., with abrupt changes On the other hand, keeping a constant inner-radius a
at the positionsz;, z; + b;, etc.) involves three steps: Firstbuilt-in limitation of our approach. However, the choice of
the fields in each segment are expanded in transverse rabtaling arbitrary values ofy; for each ring is not attractive,
and azimuthal eigenfunctions to obtain their axial dependensiace it would make the protection of the dielectric rings
for any given frequencw. Second, the appropriate boundarg more difficult task and in addition it would not define
conditions are imposed at each interface (including the eral-relatively smooth surface of zero potential, so that the
points z = 0 and z = L) to interrelate the coefficients of abrupt variation of; would impart an undesired amount of
each eigenfunction expansion. Third, the dispersion relatitmmperature in the beam. The actual choice in practice is that
k(w) is obtained by Fourier-transforming the axial dependencéintroducing a smooth function(z). By employing a WKB-
of the fields. For a total number aP dielectric rings, this type approximation our method can be extended to take into
approach amounts to dividing the corrugated waveguide irsocount such a choice.

(2P + 1) regions and applying the boundary conditions at an The purpose of this paper is to demonstrate the applicability
equal number of2P + 1) interfaces. This approach has beepnf our approach to a nonperiodic system. [Which type of
implemented in theCASCADEcode [15], [16]. nonperiodicity accomplishes the ultimate good (i.e., maxi-

An alternate approach, proposed and implemented in tigzation of the strength of the interaction in the TWT or its
paper, again involves three steps: First, the fields are expand&dimization in a gyrotron-beam tunnel) is a question beyond
in azimuthal and axial eigenfunctions (with the input/outpuhe scope of this paper.] For such a first application, the system
conditions atz = 0 and 2z = Ly defining a Sturm—Liouville is simplified in two ways. The first simplification is that the
problem for the fields in the vacuum inner region), leading toner radii of the metal and dielectric rings are both equal to
the corresponding radial dependence for any given frequenay.as is already shown in Fig. 1. In practice, the structures
Second, the appropriate boundary conditions are imposedatdually employed in gyrotron-beam tunnels have the inner
interrelate the coefficients of each eigenfunction expansiatiameter of the dielectric rings somewhat larger than that of
Third, the summation over the eigenfunctions is performed the adjacent conductor, in order to protect the dielectric from
obtain, if needed, the axial distribution of the total field. Irany stray electrons. This offset is, however, much smaller than
this approach, the system is divided(iR + 1) regions and an the other dimensions of relevance, and we expect (and \erify
equal number of boundary conditions is involved fat «, posterior) that it can be safely ignored. For cases where such
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an offset is of importance, this simplification can by removeir the propagating wave in the empty cylindrical region to be
by incorporating the appropriate boundary conditions in thexpanded as a sum of Bloch components [12]—[14]
expressions for field structure in the regip» «. The second

+oo
simplification refers to the boundary conditions at= 0 E.(p,z)= Z AnFon(p) exp(—jknz),
and » = Ly, which in Section Il are assumed periodic. As n=—oo
a consequence, the present implementation of our approach for O0<p<a and 0<z< Ly ()

applies to systems containing many wavelengths along the , . :

axis, contrary to th&€ ASCADEcode, which also can handle,eaCh with axial wavenumbd«n_:_ k +n(2m/Lo), wh.|le An

for example, dielectrics with a triangular cross section or ve?e unknown expansion coefﬂments to be determined. If the

short cavities [17]. This simplification can also be removef gquencyw 1s _regl, then_dependlpg on the_value of the_ .

by implementing the appropriate Sturm-Liouville boundarVansverse variation is either _oscnlatory (vylth characteristic

conditions. ength A1) or evanescent (with characteristic length!),
The mathematical formulation of a simplified corrugate herthn and é" are deﬁned asgy, = (w/c)’ — k, a.n(.j.

waveguide is presented in Section II. An infinite system &f = Fn — (w/)", respectively. Of course, the same definition

equations is derived, which is solved numerically by letting n%an be use_:d also for complex The functionkp, (p) is given

finite-size determinant become equal to zero. This analysis I%the radial dependence of the transverse nibi&,

used in Section Ill, where a numerical codd§HBONE-TM  Fu,.(p)

is developed and its main steps are described. Examples for Jo(hnp), forRe(h2)>0,Re(hy,) >0, Im(hy,) > 0
both a periodic and a nonperiodic corrugated waveguide are — {Io(tnp), forRe(th) >0,Re(t,) >0, Im(t,) <0.

presented in Section IV, and the results (dispersion relation, @)
field components, and quality factor) are compared with those
obtained by theCASCADEcode. In the latter equation/y(x) and Iy(z) are, respectively, the

Bessel function and the modified Bessel function, both of the
first kind. The corresponding functions of the second kind have
II. MATHEMATICAL FORMULATION been dropped, in order to keep the fields finitepat 0.

The cross-sectional geometry of the circular waveguide hagvliathematically, it would suffice to use a single definition
already been described and is shown in Fig. 1. In suchl&9- £on(p) = Jo(hnp)], since the frequency is expected to
structure, out of the variety of modes which can in principlg® complex due to the complex permittivity. However, since
propagate, we are currently interested in the development”ﬂ? loss tangent is relatively small, the frequency is expected to
the electron beam of the Langmuir mode, which can cou;ﬁ’@ almost real. Thus, we have opted to use the dual definition
conveniently with the lowest frequency azimuthally symmetri%f Fon, both in order to maintain a better feellng for th_e radial
TM mode. In order to demonstrate our approach in tffependence and to facilitate a numerical implementation based
simplest case, we confine our attention to systems where:°f) @n expansion about the (large) real value of the argument.
the electromagnetic field is independent of theoordinate, ~ Similarly, in each dielectric regioni; (a<p<Di, zi<z<
that isd/d¢ = 0; and 2) only the fundamental TM mode is? + bi»¢ = 1,2,---,P) the longitudinal component of the
excited, that isf (p, z) = 0 everywhere. A time dependenceelec”'c field is represented by a Fourier series as an infinite
of exp(+jwt) is assumed (and suppressed in the notatioRym Of the corresponding standing eigenwaves

throughout the analysis. _ _ E.i(p,z) = ZBmiGOmi(p) coslkmi(z — )],
The analysis follows established procedures: First, the lon- -
gitudinal component of the electric fiefd. (p, =) is considered for a<p<D; and z <z<z +b. (3)

in each region separately and, then, the other components of _ . L .

the electromagnetic field are expressed in termsEofp, 2) In this equation no sine term is mcluded, for the radial com-
employing Maxwell's equations. Then, the boundary Condp_onent. of the electric f|eld_to vanish at= z;. Eurthermore,
tions are forced on the interfaces that separate the vari(sng aX|§1I wavenumber,; is equal .tomw/ bi, In O(der for
regions of the waveguide. The satisfaction of the boundaije radial component of the electric field to vanish-at=

conditions gives rise to the homogeneous infinite set of equa-T i- Therefore, the summation is to be performed over all
tions that governs the problem. nonnegative integers. Finally, B,,,; are unknown expansion

To obtain an appropriate expansion fak(p,z) in the _coefﬂqents to be_ de_termlned, while the functi@#y,,;(p)
empty inner cylindefp < «), we consider regiof’ (the entire is a linear combination ot/y(p) and YO(,p) or Io(p) and
length L) as the unit cell of a periodic structure. Strictly’£0(p), whereYo(p) andKo(p) are, respectively, the Neumann
speaking, the coupling of regiol’ to its environment at fungtlon_ and the modified Bessel functlo_n_ of the second kind.
2 = 0and atz = Lo, expressed by appropriate reflectior:nrak'ng into accou_nt the boun_dary condition @at= D_i (i.e.,
and transmission coefficients, defines a Sturm—Liouville prot=: = 0) the functionGonm:(p) is given by the equation
lem. However, the long lengtid, is expected to contain Jo(gmip)Yo(gmiDi) — Jo(gmiDi) Yo(gmip),
many wavelengths, so that the results are anticipated to (p) = Re(g2,;) > 0,Re(gmi) > 0,Im(gpmi) >0
largely insensitive to the actual type of boundary conditions” ™ pr= Lo(smip)Ko(smiDi) — Lo($miDi) Ko(smip),
imposed atz = 0 and z = L. For simplicity, we choose Re(s2,;) > 0,Re(sp:) > 0,Im(spm;) <0
periodic boundary conditions, thus Floquet’'s theorem allows 4
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with g2, = (w/c)?e; — k2, and s2. = k2, — (w/c)?e; the expansion coefficient®, (i = 1,2,---,P and m =
representing the inverse of the transverse characterisiid,2,---) of the field inside the dielectric rings.
length inside each dielectric region, analogoushtp and On the other hand, the tangential magnetic field should be
t, in the empty regionV. Although it is mathematically continuous at the interface of the empty inner cylinder and the
redundant, we have chosen to give the dual definition dfelectric rings. This leads to the equation
Goms for the same reasons as fbp,,.

Finally, the electromagnetic field inside the perfect conduc- (@ 2) = Hei(e, 2),  for 2 <z <z +bi;
tors (regionsC;,¢ = 1,2,---, P and outside the cylindrical 1=1,2,---,P 9
waveguide) should be zero.

Then, taking into account that the electromagnetic field h8% eauivalently, using the expressions for the azimuthal mag-
no azimuthal dependence and tHt(p, z) = 0 for the TM Netic field
modes considered, the transverse field components in each = 4

region of the circular waveguide are immediately obtained h—;Fén(Oé) exp(—jknz)
from Maxwell's equations: The componenis,(p,z) and n=-—0c0
H_(p, ) are proportional to the radial derivative &L (p, z), €; B
whlle E_ (p,z) =0andH,(p, z) = 0 everywhere. = Z 52 omi (@) cos[kmi(z = 2],
The tangentlal electric-field component should be continu- m=0
for z <z<z +0b. (20)

ous at the interfacg = «. Taking into account the alternative

presence of dielectric and conducting material, this Cond'“cmultmlymg (10) by coslrii(z — #)] and integrating over the

gives length of each dielectric ring, one obtains
E.(o,z) =E.(a,2z) for z <z<z +1;, b;€; Bimi
. 2 Ornz( )(1 + 67710)
1=1,2,---, P (5a) 202,
E.(a,2)=0 for z+b<z<z+ L, ‘
i=1,2,,P (5b) nz_:oo iz, Fon (@) exP(=gkn )R i 1)
or equivalently, using (1) and (3) (11)
The latter equation holds foi = 1,2,.-., P and for all
Z A Fo (o) exp(—jkqz) nonnegative integer values of: and represents a second
q=—00 infinite set of equations relating,, to B,,; (for each?). The
derivatives F{,(p) = 8Fp,/3p and Gy,,,;(p) = 8Gomi/p
ZBmZGOmZ ) coslkmi(z — )] arise out of the expressions féf_(p, z). Equation (11) also
m=0 for % <z<z+b - () satisfies the boundary conditions fel, at the interface
0 for z+b<z<z+L; p =

Solving (11) for B,,,; and substituting into (7), one obtains
Using orthogonality, (i.e., multiplying both sides of (6) bythe linear system
exp(+7jk,z) and integrating over the length of the waveguide),

. +oo
we obtain S AXen = AT, neZ (12)
r f=—0o0
A Fon(a)Lg = exp(+7k, 2
on(@) Lo ; p(+jknz) where
+oo P e _1\., oo
F! (Oé) Gj(k77, ke)zi 92 GO ( )
N BnliGOrni(a)R(knv Romi bz) (7) Xé n — 0t . mi e
g;o ’ hi ; eib; = Goila)
1
where Rk, K, bi) R(—= ks Fimi, bi 13
) T JR( ) (3)
R inisbs) = [ explt ) cos(in) dz U, = L LoFo (@), (14)
0 ) 2
1 — elknbi(—1ym . , .
Sk — s kn # £Emi The eigenvalue problem of (12), with the associated def-
= b " Romi inition of X,, and ¥,, concludes the formalism of the
52(1 + 6mo), kn = tEm analysis: Setting the complex determinant equal to zero gives,

(8 €9 for any given value ok the frequencyw, while the
field components are subsequently obtained from the relevant
and 6,0 is the Kronecker delta. Equation (7) holds for alequations. For numerical computations, one can truncate the
integer values ofi and represents an infinite set of equationgfinite summations in (12) and (13) {o= £ N,,x andm =
one for each value of, that relates the expansion coefficient3/,,,,, respectively. This results to a system(@fV,,, + 1)
An,n € Z, of the field in the empty inner region with equations.
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For cases of practical interest, the permittivity of the 4.08 S—
dielectric rings is either real (e.g., in a TWT, where losses /;/O/O e ° o‘g\o\\
are undesired), or complex, but with relatively not too large =75 © N -
loss-tangent (e.g., in the gyrotron-beam tunnel, where the 4040 % st ot %0
vacuum requirements represent a serious limitation on the _ .o 7 L ox % . oo
choice for the material). In addition, since the application of T « *
this analysis to the gyrotron-beam tunnel aims at suppressing 2 400 7 L
any interaction, high accuracy in the value of the frequency is ™
not a critical requirement. For these reasons, we can neglect 396
the imaginary part ok;, solve the eigenvalue problem with =" =t e, .
real arithmetic to obtain the real value of and the spatial . " ",
dependence of the fields, and finally use the imaginary part of 392 o N
e, to obtain the quality factof) of the system. 0.6 0.2 O'4RL /2:-6 0.8 1.0

Q

For the quality factor, the definition based on energy is
employed, for example:

where the stored electromagnetic energy is the integralég
1[eolE|? + polH|?] over the total volume of the system,

Fig. 2. The dispersion relation(k) for the first TM mode in the simplified
periodic geometry without losses, as obtained by FR@HBONE-TMcode
(solid line) and by theCASCADEone (dashed line). In addition, results from
the CASCADEcode are shown for the exact periodic geometry without losses
fterisks), as well as for the simplified periodic geometry with 7+ 50.5
mpty circles)s = 7+ j1.4 (crosses), and = 7 + j2.1 (full squares).

W
_Wern = -Ploss

0 (15)

while the power loss is the summation of the dissipated power

Pdiss

permittivity and the refraction lossef..;,. The former is
obtained as the integral gf.J.o, - E* in the dielectric volume,
with the introduction of the ohmic current densilfém1
oE = jwlm[s;]E, while the latter is given by the integral of
: Re[E x H*]- 2 over the cross section of the inner region.
Once @ is calculated, the conversation of electromagnetic
energy allows for the imaginary part afto be obtained from
Im[w] = Re[w]/2Q.

The analysis developed in the previous section has be[
implemented in the numerical codeISHBONE-TM The
structure of this code is as follows.

a)

b)

<)
d)

e)

at the interface is checked. For satisfactory continuity of

the fields at the interfaces, the values\f... and M ..

have to be taken greater than 20 and 10, respectively.
f) The numerical code thus provides as output the disper-

sion relationw(k) [by repeating step d)] and for every

pair (w, k) the fields at any position, the energy harmon-

ics and the quality factor of the corrugated waveguide.
To test the convergence of the numerical procedure and the
accuracy of the results, the cod@SHBONE-TMhas been
run in parallel with the codeCASCADEusing the CRAY
Y-MP/M94 of Ecole Polytechnique Federale de Lausanne
Q}EPFL). The latter code gives the frequency and the field dis-
fibution and a subsequent Fourier analysis of the dependence
E.(z) gives the dispersion relation.

in the dielectric rings due to their complex dielectric

I1l. N UMERICAL IMPLEMENTATION

The input parameters (dimensional or dimensionless) are
requested in an interactive format. IV. NUMERICAL CONVERGENCE,RESULTS, AND DISCUSSION

To facilitate the convergence, as the initial estimates for |, .qer to establish the convergence properties in what

?”'_the cutoff frequenues_ are u_sed f‘?f a Waveg_u_ld_e %Ilows, numerical computations are presented for one periodic
infinite length, loaded with a dielectric of permittivity 5y 5ne nonperiodic geometry. The parameters of each are
e; and width D; — a4 = 1,2,---, P. In this step, the yiven in Table 1. All fields are normalized in terms &% —
bisection method is used to estimate the cutoff frequen@;(p — 0,z = 0), i.e., the value of the total (including all

w- Bloch Harmonics) axial electric field on the axis.

The values ofV,,,, and M., needed to truncate the

summations in (12) and (13), are interactively chosen. o

The eigenvalue problem of (12) is solved for eithef Periodic Structure

one value or for a range of values of the wavenumber In this case, the structure is assumed to consist of a large
k, as specified, using as an initial estimate the cutafumber of identical segments, with the characteristics given
frequencyw of step b). At first, the (conservative)in the first row of Table I. For this geometry, excellent
bisection method is used with small values f8t,.. convergence (accurate with 1 out of 4000) of the dispersion
and M. (namely 3 and 1, respectively) to yield therelation w(k) for the first TM mode is obtained by taking
first approximation of the roab. Subsequently, the code N, = 2 and M,,,,. = 1. The results are shown by the solid
has the possibility of interactively increasing the valuesurve in Fig. 2. It is noted that the frequency is indeed close
of N, andM ., and the extremely fast secant methotb the first cutoff frequency of an infinite waveguide having
is applied to improve on the accuracy without runningn inner radius of 6 mm cladded by a dielectric ring of radius
the danger of defocusing from the root. 8 mm (with the real part of its permittivity equal to seven).
For every paifw, k) the electromagnetic field compo-Running theCASCADEcode for the same simplified geometry
nents are calculated in each region and their continuignd with no losses in the dielectric rings the dashed line of
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TABLE |
SAMPLE GEOMETRIES

o [mm} D, [mm] g b, [mm] L, [mm]

A. Periodic Structure
6 14 7.0+j0.5 3 6

B. Non—Periodic Structure

6 14 8.0+j0.4 1 4
6 16 75+j0.6 4 6
6 18 10 +j0.1 2 4
6 20 9.0 +j0.8 7 10

with a loss tangent as high &s1/7 = 0.3, the discrepancy
is less than 3%.
Satisfactory convergence of the quality factor curyék)

o 151 with respect toV,,. and M, is obtained for the small

S values three and one, respectively. From Fig. 3, it is evident
§ 47 that both codes give almost identical results for the quality
o factor.

= In Fig. 4(a) and (b), the number of modes and the central
S 143 processing unit (CPU) time (in seconds) versus the frequency

error (in kHz) are plotted for both codes. It can be seen that
a frequency error less than 100 kHz is achieved by using
13.9 e nine modes in th&ISHBONE-TMcode and 32 modes in the
0.0 0.2 0.4 0.6 0.8 10 CASCADEone, while the required CPU time is 10 and 15
klo/ 27 . . :
s, respectively. [These comparisons are based on an earlier
Fig. 3. The quality factoiQ(k) for the first TM mode for the simplified version of theFISHBONE-TMcode, in which the bisection
periodic structure, obtained by tH8SHBONE-TMcode (solid line) and by method was used for all frequency calculations. With the
the CASCADEcode (empty circles). additional implementation of the secant method in step d), the
current (final) version of th&ISHBONE-TMcode has been
Fig. 2 has been produced. It can be seen that the frequesegn to be about 50% faster than the earlier version.]
difference is indeed negligible. To verify the equivalence of the two codes, the varia-
As has been mentioned in the introduction, the realistion of the normalized longitudinal electric-field component
system employs a somewhat different inner radius for thg.(p)/FEo with respect to the radiug at the axial position
dielectric and conducting rings, while our analysis (and conse= 0.3b; (dielectric region) and at lower cutoffcLo/27 =
quently our numerical code) employs a somewhat simplifi€d01) is presented in Fig. 5(a). In particular, in this figure
model, which assumes an identical radius To assess the the results obtained by th& SHBONE-TM code for the
effects caused by this discrepancy, tBASCADEcode has simplified geometry and those obtained by tBASCADE
also been run with a radius offset of 1 mm (exact geometrigr the simplified and the exact one are presented. It is
and no losses in the dielectric rings. The results are alsbvious that both codes give almost identical results for the
presented by asterisks in Fig. 2. It can be seen that the exsiotplified geometry, while the results for the simplified and
geometry gives a frequency of about 40 MHz lower than ithe exact geometry have a slight difference. Furthermore, in
our approximation. Clearly, this discrepancy of less than 1%g. 5(b), the variation of the normalized longitudinal electric-
is, in general, of no significance unless a very accurate desfggld component. (p)/E, with respect to the radius at the
is required. axial positionz = b; + 0.3(L; — b1) (copper region) and at
An additional simplification in theFISHBONE-TMcode lower cutoff (kLo/27 = 0.01) is presented for the simplified
lies in the assumption of no losses in the dielectric rings. TeEometry without losses. From this figure, it is evident that
assess this simplification theASCADEcode has been runboth codes give identical results. Finally, in Fig. 5(c), the
with e = 7+ 0.5 (empty circles)e = 7+ j1.4 (crosses), and results referred to the longitudinal variation of the normal-
e = 7+;2.1 (full squares). It can be seen that fRKSSHBONE- ized longitudinal electric-field componel®.(z)/Ey at the
TM code slightly overestimates the frequency. However, everterface (p = «) and at lower cutoff(kLo/2xr = 0.01)
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Fig. 4. (a) The required number of modes and (b) the CPU time (in s) needed 0.C0 (]] W‘ 2 3‘ 4 5 2
for a given frequency error (in kHz) for the simplified periodic structure,
obtained by theFISHBONE-TMcode (solid line with full circles) and by the p [mm]
CASCADEcode (dashed line with full triangles). (b)
are presented for both ttdSHBONE-TMand theCASCADE 2.5 .
code for the simplified geometry. Clearly, both codes are also
in very good agreement. 20
B. Nonperiodic Structure R
S 154+
As a reference nonperiodic structure, we have used the % p=a (interface)
parameters in Table I. It has been seen that the number 75 1 OL
of modes required to obtain convergence in the dispersion — '
relation curvew(k) is now only slightly largef V... = 3 and
My.x = 3). In Fig. 6, the dispersion relations obtained by the
FISHBONE-TMand the CASCADEcode for the simplified

nonperiodic geometry are presented. From this figure, it is
obvious that both codes are giving identical results, since the
difference of 1.08 MHz (0.05%) is in practice negligible. ©

In Figs. 7 and 8 we present the variation of the normalize
9 P F(?g. 5. (a) The variation of the normalized longitudinal electric field

Iongitudine_\l electric-field component.(p)/Ey with respect E.(p)/Eo with the radiusp (in mm) at the axial position: = 0.3b;
to the radiusp at lower cutoff(kLo/2m = 0.01) and at four (dielectric region) and at lower cutoffcLo/27 = 0.01) for the periodic

solid line) by theCASCADEcode for the simplified geometry (empty circles)

reSij'CtiveIY' In.these ﬁgures' the_data from both COde§ _Fﬁ for the corresponding exact geometry without losses (dashed line). (b)
practically identical. As expected, in the case of nonperiodite variation of the normalized longitudinal electric fiekl (p)/ Eo with

geometry, the field components require for convergence higl§ radiusp (in mm) at the axial positiorr = b; + 0.3(L1 — b1) (copper

| N, - 50 d M — 12. Finally. in Fig. 9 region) and at lower cutoffkLo/27 = 0.01) for the simplified periodic
Values Npax = ol an max  — - T Y : 8- 9, structure without losses, obtained by FSHBONE-TMcode (solid line) and
the results are presented for the variation withof the by the CASCADEcode (empty circles). (c) The variation of the normalized
normalized longitudinal electric-field componeﬂ;(z)/Eo at longitudinal electric fieldE. (2)/ Eo with the axial positionz (in mm) at the
the interf ~ datl tofkLa /270 — 0.01 interface(p = «) and at lower cutoff kLo /27 = 0.01) for the simplified

Fj' inter ace(p - 04) and at lower cu Oﬁ( 0/_ 7r.— . ) periodic structure, obtained by tidSHBONE-TMcode (solid line) and by
It is also clear that as expected the electric field becom@s CASCADEcode (empty circles).
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nonperiodic structure obtained by ti@SHBONE-TMcode (solid line) and

by the CASCADEcode (empty circles).
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Fig. 7. The variation of the normalized longitudinal electric fi&ld(p)/ Eo
with the radiusp (in mm) for the simplified nonperiodic structure at lower
cutoff (kLo /27 = 0.01) at axial positions: = z; + 0.2b; (first dielectric

with the axial position: (in mm) at the interfacép = «) and at lower cutoff
(kLo/27 = 0.01) for the simplified nonperiodic structure, obtained by the
FISHBONE-TMcode (solid line) and by thEASCADEcode (empty circles).

significant in the region of the forth dielectric ring, since
the operating frequency is close to the cutoff frequency of
its corresponding dielectric loaded infinite waveguide.

V. CONCLUSION

In this paper, the dispersion characteristics of a waveguide
with nonperiodic dielectrically loaded corrugations have been
investigated for the azimuthally symmetric TM waves. Tech-
niques developed for a periodic system have been extended
to describe the nonperiodic structure and the results obtained
by this method FISHBONE-TMcode) have been found to be
in very good agreement with those obtained by an established
code CASCADE. The main advantage of this code compared
to the CASCADEone is that it gives the dispersion relation
directly and with only a small number of modes, resulting in
respectable savings on CPU time. Furthermore, in cases when

region, empty circles); = =z + 0.2b; (second dielectric region, crosses).the imaginary part of permittivity is not too large, neglecting

z = z3 + 0.2b3 (third dielectric region, full squares), and= z4 + 0.2b4

(forth dielectric region, solid line).
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Fig. 8. The variation of the normalized longitudinal electric fi&ld(p)/ Eo

this part has been seen not to affect the dispersion relation.
The results obtained indicate the possibility of extending this

method to more complicated cases, such as modes with no
azimuthal symmetry.
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