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Calculation of Eigenmodes in a
Nonperiodic Corrugated Waveguide

Ioannis G. Tigelis,Member, IEEE, Marco Pedrozzi, P. G. Cottis, and John L. Vomvoridis

Abstract—A theoretical technique for determining the disper-
sion relation, the electromagnetic field components, and the qual-
ity factor of a dielectric-loaded nonperiodic corrugated waveguide
is presented for the case of azimuthally symmetric TM waves.
The Floquet theorem is used to express the field distribution in
the vacuum region, while an eigenfunction expansion is employed
in each dielectric region, with the appropriate boundary condi-
tions applied at the interfaces, leading to an infinite system of
equations. This system is solved numerically by truncation, while
the convergence of the solution is examined with the number of
spatial harmonics. Based on this formulation, a numerical code,
called FISHBONE-TM , is developed and its results are compared
with those obtained with an established code (CASCADE) based
on the scattering-matrix method.

Index Terms— Bloch harmonics, corrugated waveguide,
gyrotron-beam tunnel.

I. INTRODUCTION

T HE GYROTRON is an inherently fastwave electron-
beam device which approximately operates at the gy-

rofrequency of the electrons (with a small Doppler shift) in
an axial magnetostatic field. For high-power performance,
the properties of the electron beam (in particular, the ratio

of transverse to longitudinal momentum and the current
density carried by the beam) need to be adjusted from the
values produced by the electron gun to those required in the
gyrotron cavity. This is accomplished in the beam tunnel (the
region between the electron gun and the gyrotron cavity),
by increasing the axial magnetostatic field. To prevent the
gyrotron interaction from occurring prematurely in the latter
part of the beam tunnel (where the ratio reaches values
high enough) rather than in the gyrotron cavity [1]–[3], the
interior walls of the beam tunnel are lined with a lossy
material, interlaced with metal rings to collect any stray
electrons and prevent them from depositing on the dielectric.
For good behavior of the lossy material in the presence of the
high-quality vacuum of the tube, the available choices limit the
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loss tangent generally to about 0.1, although values as high as
0.33 have also been reported [1].

In the structure just described, replacing the dielectric rings
by vacuum indentations with electrically equal dimensions and
distributing the losses on the wall (rather than in the dielectric
volume), the electrodynamically identical corrugated wave-
guide is produced. Such structures are widely used to distribute
the interaction of the electrons with the electromagnetic waves
along the entire structure of a traveling-wave tube (TWT) and
to avoid reflections and oscillations in the extraction sections
[4] or as mode converters [5]. Of course, in spite of their
equivalence, these two applications of corrugated waveguides
are serving radically different purposes: to generate a wave in
the TWT and to suppress any wave growth in the gyrotron-
beam tunnel.

In either of those realizations of a corrugated waveguide
(i.e., in the gyrotron-beam tunnel and in the TWT), the
structure is typically periodic with the period consisting of
one metal ring and one dielectric ring (or one indentation).
Periodic-guiding structures are employed in microstrip-array
slow-wave structure (SWS) [6], in gyro traveling-wave am-
plifier (TWA) operations [7], or in TWT’s and oscillators
[8], [9]. Their dispersive characteristics have been analyzed
either in the frequency domain [7]–[10] or in the time domain
[11]. The field analysis of such a structure is straightforward
[12]–[14]: The Floquet theorem is invoked to represent the
propagating wave in the inner region as an infinite sum of
Bloch components, while the fields in the dielectric rings
(or the indentations) are represented by an infinite sum of
the corresponding standing eigenwaves. Then, the appropriate
boundary conditions at the interface of the inner region with
the dielectric rings (or indentations) and with the conducting
walls are imposed. Application of the orthogonal properties
of the eigenfunctions yields the dispersion relation in
the form of a determinantal equation of infinite size, which is
truncated to finite size for numerical calculations.

It is apparent that deviations from periodicity would modify
both the frequency response and the field distribution
along the corrugated waveguide. Whether and when such mod-
ifications represent an improvement (i.e., a stronger interaction
for the TWT) or a weaker interaction easily absorbed by the
lossy dielectric in the gyrotron-beam tunnel remains to be
studied. For such a study, the field analysis of any given
geometry is called upon to produce: 1) the frequency spectrum

, in order to identify possible resonances of the guided
wave with the electron beam (e.g., by equating for
the axial interaction involved in the TWT) and 2) the relative
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Fig. 1. The geometry of a cylindrical nonperiodic corrugated waveguide.

amplitude and spatial distribution of the resonant component
of the wave to calculate its coupling to the electron beam.

The geometry of a cylindrical nonperiodic corrugated wave-
guide is shown in Fig. 1, where the cylindrical coordinates

are employed. Over a total length , the inner
vacuum region extends radially to the radius . Beyond
this radius are located the dielectric rings (from to

with outer radius , thickness , and
complex permittivity . The conductor extends both beyond
(for and between (for , when

the dielectric rings. Lack of periodicity means that
one or more of the quantities , and are distributed
unevenly.

An analytical approach to calculate the wave field structure
in a geometry like that of Fig. 1 (i.e., with abrupt changes
at the positions , etc.) involves three steps: First,
the fields in each segment are expanded in transverse radial
and azimuthal eigenfunctions to obtain their axial dependence
for any given frequency . Second, the appropriate boundary
conditions are imposed at each interface (including the end-
points and to interrelate the coefficients of
each eigenfunction expansion. Third, the dispersion relation

is obtained by Fourier-transforming the axial dependence
of the fields. For a total number of dielectric rings, this
approach amounts to dividing the corrugated waveguide into

regions and applying the boundary conditions at an
equal number of interfaces. This approach has been
implemented in theCASCADEcode [15], [16].

An alternate approach, proposed and implemented in this
paper, again involves three steps: First, the fields are expanded
in azimuthal and axial eigenfunctions (with the input/output
conditions at and defining a Sturm–Liouville
problem for the fields in the vacuum inner region), leading to
the corresponding radial dependence for any given frequency.
Second, the appropriate boundary conditions are imposed to
interrelate the coefficients of each eigenfunction expansion.
Third, the summation over the eigenfunctions is performed to
obtain, if needed, the axial distribution of the total field. In
this approach, the system is divided in regions and an
equal number of boundary conditions is involved (at ,

one outwards and inwards). For a periodic system it suffices
to take the special case .

Two distinct advantages can be expected from the approach
developed in the present paper: First, a smaller number of
numerical operations is involved. (However, not in the ratio

, since the long vacuum region is
expected to require more terms for convergence.) Second, if
the information obtained is to be used eventually to study
the interaction of the guided waves with an electron beam,
then the dispersion relation and the relative amplitudes
of the various axial modes are the only information actually
needed. In our approach, this information is obtained in the
second step, and the third step is (in this context) completely
redundant.

On the other hand, keeping a constant inner-radiusis a
built-in limitation of our approach. However, the choice of
having arbitrary values of for each ring is not attractive,
since it would make the protection of the dielectric rings
a more difficult task and in addition it would not define
a relatively smooth surface of zero potential, so that the
abrupt variation of would impart an undesired amount of
temperature in the beam. The actual choice in practice is that
of introducing a smooth function . By employing a WKB-
type approximation our method can be extended to take into
account such a choice.

The purpose of this paper is to demonstrate the applicability
of our approach to a nonperiodic system. [Which type of
nonperiodicity accomplishes the ultimate good (i.e., maxi-
mization of the strength of the interaction in the TWT or its
minimization in a gyrotron-beam tunnel) is a question beyond
the scope of this paper.] For such a first application, the system
is simplified in two ways. The first simplification is that the
inner radii of the metal and dielectric rings are both equal to

, as is already shown in Fig. 1. In practice, the structures
actually employed in gyrotron-beam tunnels have the inner
diameter of the dielectric rings somewhat larger than that of
the adjacent conductor, in order to protect the dielectric from
any stray electrons. This offset is, however, much smaller than
the other dimensions of relevance, and we expect (and verifya
posteriori) that it can be safely ignored. For cases where such



238 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 2, FEBRUARY 1997

an offset is of importance, this simplification can by removed
by incorporating the appropriate boundary conditions in the
expressions for field structure in the region . The second
simplification refers to the boundary conditions at
and , which in Section II are assumed periodic. As
a consequence, the present implementation of our approach
applies to systems containing many wavelengths along the
axis, contrary to theCASCADEcode, which also can handle,
for example, dielectrics with a triangular cross section or very
short cavities [17]. This simplification can also be removed
by implementing the appropriate Sturm–Liouville boundary
conditions.

The mathematical formulation of a simplified corrugated
waveguide is presented in Section II. An infinite system of
equations is derived, which is solved numerically by letting its
finite-size determinant become equal to zero. This analysis is
used in Section III, where a numerical code (FISHBONE-TM)
is developed and its main steps are described. Examples for
both a periodic and a nonperiodic corrugated waveguide are
presented in Section IV, and the results (dispersion relation,
field components, and quality factor) are compared with those
obtained by theCASCADEcode.

II. M ATHEMATICAL FORMULATION

The cross-sectional geometry of the circular waveguide has
already been described and is shown in Fig. 1. In such a
structure, out of the variety of modes which can in principle
propagate, we are currently interested in the development in
the electron beam of the Langmuir mode, which can couple
conveniently with the lowest frequency azimuthally symmetric
TM mode. In order to demonstrate our approach in the
simplest case, we confine our attention to systems where: 1)
the electromagnetic field is independent of thecoordinate,
that is ; and 2) only the fundamental TM mode is
excited, that is everywhere. A time dependence
of is assumed (and suppressed in the notation)
throughout the analysis.

The analysis follows established procedures: First, the lon-
gitudinal component of the electric field is considered
in each region separately and, then, the other components of
the electromagnetic field are expressed in terms of
employing Maxwell’s equations. Then, the boundary condi-
tions are forced on the interfaces that separate the various
regions of the waveguide. The satisfaction of the boundary
conditions gives rise to the homogeneous infinite set of equa-
tions that governs the problem.

To obtain an appropriate expansion for in the
empty inner cylinder , we consider region (the entire
length as the unit cell of a periodic structure. Strictly
speaking, the coupling of region to its environment at

and at , expressed by appropriate reflection
and transmission coefficients, defines a Sturm–Liouville prob-
lem. However, the long length is expected to contain
many wavelengths, so that the results are anticipated to be
largely insensitive to the actual type of boundary conditions
imposed at and . For simplicity, we choose
periodic boundary conditions, thus Floquet’s theorem allows

for the propagating wave in the empty cylindrical region to be
expanded as a sum of Bloch components [12]–[14]

for and (1)

each with axial wavenumber , while
are unknown expansion coefficients to be determined. If the
frequency is real, then depending on the value of, the
transverse variation is either oscillatory (with characteristic
length or evanescent (with characteristic length ,
where and are defined as and

, respectively. Of course, the same definition
can be used also for complex. The function is given
by the radial dependence of the transverse mode

for
for

(2)

In the latter equation, and are, respectively, the
Bessel function and the modified Bessel function, both of the
first kind. The corresponding functions of the second kind have
been dropped, in order to keep the fields finite at .

Mathematically, it would suffice to use a single definition
[e.g., ], since the frequency is expected to
be complex due to the complex permittivity. However, since
the loss tangent is relatively small, the frequency is expected to
be almost real. Thus, we have opted to use the dual definition
of , both in order to maintain a better feeling for the radial
dependence and to facilitate a numerical implementation based
on an expansion about the (large) real value of the argument.

Similarly, in each dielectric region
the longitudinal component of the

electric field is represented by a Fourier series as an infinite
sum of the corresponding standing eigenwaves

for and (3)

In this equation no sine term is included, for the radial com-
ponent of the electric field to vanish at . Furthermore,
the axial wavenumber is equal to , in order for
the radial component of the electric field to vanish at

. Therefore, the summation is to be performed over all
nonnegative integers . Finally, are unknown expansion
coefficients to be determined, while the function
is a linear combination of and or and

, where and are, respectively, the Neumann
function and the modified Bessel function of the second kind.
Taking into account the boundary condition at (i.e.,

) the function is given by the equation

(4)
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with and
representing the inverse of the transverse characteristic
length inside each dielectric region, analogous to and

in the empty region . Although it is mathematically
redundant, we have chosen to give the dual definition of

for the same reasons as for .
Finally, the electromagnetic field inside the perfect conduc-

tors (regions and outside the cylindrical
waveguide) should be zero.

Then, taking into account that the electromagnetic field has
no azimuthal dependence and that for the TM
modes considered, the transverse field components in each
region of the circular waveguide are immediately obtained
from Maxwell’s equations: The components and

are proportional to the radial derivative of ,
while and everywhere.

The tangential electric-field component should be continu-
ous at the interface . Taking into account the alternative
presence of dielectric and conducting material, this condition
gives

for

(5a)

(5b)

or equivalently, using (1) and (3)

(6)

Using orthogonality, (i.e., multiplying both sides of (6) by
and integrating over the length of the waveguide),

we obtain

(7)

where

(8)

and is the Kronecker delta. Equation (7) holds for all
integer values of and represents an infinite set of equations,
one for each value of , that relates the expansion coefficients

, of the field in the empty inner region with

the expansion coefficients and
of the field inside the dielectric rings.

On the other hand, the tangential magnetic field should be
continuous at the interface of the empty inner cylinder and the
dielectric rings. This leads to the equation

for

(9)

or equivalently, using the expressions for the azimuthal mag-
netic field

for (10)

Multiplying (10) by and integrating over the
length of each dielectric ring, one obtains

(11)

The latter equation holds for and for all
nonnegative integer values of and represents a second
infinite set of equations relating to (for each ). The
derivatives and
arise out of the expressions for . Equation (11) also
satisfies the boundary conditions for at the interface

.
Solving (11) for and substituting into (7), one obtains

the linear system

(12)

where

(13)

(14)

The eigenvalue problem of (12), with the associated def-
inition of and , concludes the formalism of the
analysis: Setting the complex determinant equal to zero gives,
e.g., for any given value of the frequency , while the
field components are subsequently obtained from the relevant
equations. For numerical computations, one can truncate the
infinite summations in (12) and (13) to and

, respectively. This results to a system of
equations.
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For cases of practical interest, the permittivity of the
dielectric rings is either real (e.g., in a TWT, where losses
are undesired), or complex, but with relatively not too large
loss-tangent (e.g., in the gyrotron-beam tunnel, where the
vacuum requirements represent a serious limitation on the
choice for the material). In addition, since the application of
this analysis to the gyrotron-beam tunnel aims at suppressing
any interaction, high accuracy in the value of the frequency is
not a critical requirement. For these reasons, we can neglect
the imaginary part of , solve the eigenvalue problem with
real arithmetic to obtain the real value of and the spatial
dependence of the fields, and finally use the imaginary part of

to obtain the quality factor of the system.
For the quality factor, the definition based on energy is

employed, for example:

(15)

where the stored electromagnetic energy is the integral of
over the total volume of the system,

while the power loss is the summation of the dissipated power
in the dielectric rings due to their complex dielectric

permittivity and the refraction losses . The former is
obtained as the integral of in the dielectric volume,
with the introduction of the ohmic current density

, while the latter is given by the integral of
over the cross section of the inner region.

Once is calculated, the conversation of electromagnetic
energy allows for the imaginary part of to be obtained from

.

III. N UMERICAL IMPLEMENTATION

The analysis developed in the previous section has been
implemented in the numerical codeFISHBONE-TM. The
structure of this code is as follows.

a) The input parameters (dimensional or dimensionless) are
requested in an interactive format.

b) To facilitate the convergence, as the initial estimates for
, the cutoff frequencies are used for a waveguide of

infinite length, loaded with a dielectric of permittivity
and width . In this step, the

bisection method is used to estimate the cutoff frequency
.

c) The values of and , needed to truncate the
summations in (12) and (13), are interactively chosen.

d) The eigenvalue problem of (12) is solved for either
one value or for a range of values of the wavenumber
, as specified, using as an initial estimate the cutoff

frequency of step b). At first, the (conservative)
bisection method is used with small values for
and (namely 3 and 1, respectively) to yield the
first approximation of the root . Subsequently, the code
has the possibility of interactively increasing the values
of and and the extremely fast secant method
is applied to improve on the accuracy without running
the danger of defocusing from the root.

e) For every pair the electromagnetic field compo-
nents are calculated in each region and their continuity

Fig. 2. The dispersion relation!(k) for the first TM mode in the simplified
periodic geometry without losses, as obtained by theFISHBONE-TMcode
(solid line) and by theCASCADEone (dashed line). In addition, results from
theCASCADEcode are shown for the exact periodic geometry without losses
(asterisks), as well as for the simplified periodic geometry with" = 7+ j0:5
(empty circles)," = 7 + j1:4 (crosses), and" = 7 + j2:1 (full squares).

at the interface is checked. For satisfactory continuity of
the fields at the interfaces, the values of and
have to be taken greater than 20 and 10, respectively.

f) The numerical code thus provides as output the disper-
sion relation [by repeating step d)] and for every
pair the fields at any position, the energy harmon-
ics and the quality factor of the corrugated waveguide.

To test the convergence of the numerical procedure and the
accuracy of the results, the codeFISHBONE-TMhas been
run in parallel with the codeCASCADEusing the CRAY
Y-MP/M94 of Ecole Polytechnique Federale de Lausanne
(EPFL). The latter code gives the frequency and the field dis-
tribution and a subsequent Fourier analysis of the dependence

gives the dispersion relation.

IV. NUMERICAL CONVERGENCE,RESULTS, AND DISCUSSION

In order to establish the convergence properties in what
follows, numerical computations are presented for one periodic
and one nonperiodic geometry. The parameters of each are
given in Table I. All fields are normalized in terms of

, i.e., the value of the total (including all
Bloch Harmonics) axial electric field on the axis.

A. Periodic Structure

In this case, the structure is assumed to consist of a large
number of identical segments, with the characteristics given
in the first row of Table I. For this geometry, excellent
convergence (accurate with 1 out of 4000) of the dispersion
relation for the first TM mode is obtained by taking

and . The results are shown by the solid
curve in Fig. 2. It is noted that the frequency is indeed close
to the first cutoff frequency of an infinite waveguide having
an inner radius of 6 mm cladded by a dielectric ring of radius
8 mm (with the real part of its permittivity equal to seven).
Running theCASCADEcode for the same simplified geometry
and with no losses in the dielectric rings the dashed line of
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TABLE I
SAMPLE GEOMETRIES

Fig. 3. The quality factorQ(k) for the first TM mode for the simplified
periodic structure, obtained by theFISHBONE-TMcode (solid line) and by
the CASCADEcode (empty circles).

Fig. 2 has been produced. It can be seen that the frequency
difference is indeed negligible.

As has been mentioned in the introduction, the realistic
system employs a somewhat different inner radius for the
dielectric and conducting rings, while our analysis (and conse-
quently our numerical code) employs a somewhat simplified
model, which assumes an identical radius. To assess the
effects caused by this discrepancy, theCASCADEcode has
also been run with a radius offset of 1 mm (exact geometry)
and no losses in the dielectric rings. The results are also
presented by asterisks in Fig. 2. It can be seen that the exact
geometry gives a frequency of about 40 MHz lower than in
our approximation. Clearly, this discrepancy of less than 1%
is, in general, of no significance unless a very accurate design
is required.

An additional simplification in theFISHBONE-TMcode
lies in the assumption of no losses in the dielectric rings. To
assess this simplification theCASCADEcode has been run
with (empty circles), (crosses), and

(full squares). It can be seen that theFISHBONE-
TM code slightly overestimates the frequency. However, even

with a loss tangent as high as , the discrepancy
is less than 3%.

Satisfactory convergence of the quality factor curve
with respect to and is obtained for the small
values three and one, respectively. From Fig. 3, it is evident
that both codes give almost identical results for the quality
factor.

In Fig. 4(a) and (b), the number of modes and the central
processing unit (CPU) time (in seconds) versus the frequency
error (in kHz) are plotted for both codes. It can be seen that
a frequency error less than 100 kHz is achieved by using
nine modes in theFISHBONE-TMcode and 32 modes in the
CASCADEone, while the required CPU time is 10 and 15
s, respectively. [These comparisons are based on an earlier
version of theFISHBONE-TMcode, in which the bisection
method was used for all frequency calculations. With the
additional implementation of the secant method in step d), the
current (final) version of theFISHBONE-TMcode has been
seen to be about 50% faster than the earlier version.]

To verify the equivalence of the two codes, the varia-
tion of the normalized longitudinal electric-field component

with respect to the radius at the axial position
(dielectric region) and at lower cutoff

is presented in Fig. 5(a). In particular, in this figure
the results obtained by theFISHBONE-TM code for the
simplified geometry and those obtained by theCASCADE
for the simplified and the exact one are presented. It is
obvious that both codes give almost identical results for the
simplified geometry, while the results for the simplified and
the exact geometry have a slight difference. Furthermore, in
Fig. 5(b), the variation of the normalized longitudinal electric-
field component with respect to the radius at the
axial position (copper region) and at
lower cutoff is presented for the simplified
geometry without losses. From this figure, it is evident that
both codes give identical results. Finally, in Fig. 5(c), the
results referred to the longitudinal variation of the normal-
ized longitudinal electric-field component at the
interface and at lower cutoff
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(a)

(b)

Fig. 4. (a) The required number of modes and (b) the CPU time (in s) needed
for a given frequency error (in kHz) for the simplified periodic structure,
obtained by theFISHBONE-TMcode (solid line with full circles) and by the
CASCADEcode (dashed line with full triangles).

are presented for both theFISHBONE-TMand theCASCADE
code for the simplified geometry. Clearly, both codes are also
in very good agreement.

B. Nonperiodic Structure

As a reference nonperiodic structure, we have used the
parameters in Table I. It has been seen that the number
of modes required to obtain convergence in the dispersion
relation curve is now only slightly larger and

In Fig. 6, the dispersion relations obtained by the
FISHBONE-TMand theCASCADEcode for the simplified
nonperiodic geometry are presented. From this figure, it is
obvious that both codes are giving identical results, since the
difference of 1.08 MHz (0.05%) is in practice negligible.

In Figs. 7 and 8 we present the variation of the normalized
longitudinal electric-field component with respect
to the radius at lower cutoff and at four
axial positions and facing the dielectric and metal rings,
respectively. In these figures, the data from both codes are
practically identical. As expected, in the case of nonperiodic
geometry, the field components require for convergence higher
values and . Finally, in Fig. 9,
the results are presented for the variation withof the
normalized longitudinal electric-field component at
the interface and at lower cutoff .
It is also clear that as expected the electric field becomes

(a)

(b)

(c)

Fig. 5. (a) The variation of the normalized longitudinal electric field
Ez(�)=E0 with the radius� (in mm) at the axial positionz = 0:3b1
(dielectric region) and at lower cutoff(kL0=2� = 0:01) for the periodic
structure, obtained by theFISHBONE-TMcode for the simplified geometry
(solid line) by theCASCADEcode for the simplified geometry (empty circles)
and for the corresponding exact geometry without losses (dashed line). (b)
The variation of the normalized longitudinal electric fieldEz(�)=E0 with
the radius� (in mm) at the axial positionz = b1 + 0:3(L1 � b1) (copper
region) and at lower cutoff(kL0=2� = 0:01) for the simplified periodic
structure without losses, obtained by theFISHBONE-TMcode (solid line) and
by the CASCADEcode (empty circles). (c) The variation of the normalized
longitudinal electric fieldEz(z)=E0 with the axial positionz (in mm) at the
interface(� = �) and at lower cutoff(kL0=2� = 0:01) for the simplified
periodic structure, obtained by theFISHBONE-TMcode (solid line) and by
the CASCADEcode (empty circles).
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Fig. 6. The dispersion relation!(k) for the first TM mode for the simplified
nonperiodic structure obtained by theFISHBONE-TMcode (solid line) and
by the CASCADEcode (empty circles).

Fig. 7. The variation of the normalized longitudinal electric fieldEz(�)=E0

with the radius� (in mm) for the simplified nonperiodic structure at lower
cutoff (kL0=2� = 0:01) at axial positionsz = z1 + 0:2b1 (first dielectric
region, empty circles),z = z2 + 0:2b2 (second dielectric region, crosses),
z = z3 + 0:2b3 (third dielectric region, full squares), andz = z4 + 0:2b4
(forth dielectric region, solid line).

Fig. 8. The variation of the normalized longitudinal electric fieldEz(�)=E0

with the radius� (in mm) for the simplified nonperiodic structure at lower
cutoff (kL0=2� = 0:01) and at axial positionsz = z1+ b1+0:2(L1� b1)
(first copper region, empty circles),z = z2 + b2 + 0:2(L2 � b2) (second
copper region, crosses),z = z3+b3+0:2(L3�b3) (third copper region, full
squares), andz = z4 + b4 + 0:2(L4 � b4) (forth copper region, solid line).

Fig. 9. The variation of the normalized longitudinal electric fieldEz(z)=E0

with the axial positionz (in mm) at the interface(� = �) and at lower cutoff
(kL0=2� = 0:01) for the simplified nonperiodic structure, obtained by the
FISHBONE-TMcode (solid line) and by theCASCADEcode (empty circles).

significant in the region of the forth dielectric ring, since
the operating frequency is close to the cutoff frequency of
its corresponding dielectric loaded infinite waveguide.

V. CONCLUSION

In this paper, the dispersion characteristics of a waveguide
with nonperiodic dielectrically loaded corrugations have been
investigated for the azimuthally symmetric TM waves. Tech-
niques developed for a periodic system have been extended
to describe the nonperiodic structure and the results obtained
by this method (FISHBONE-TMcode) have been found to be
in very good agreement with those obtained by an established
code (CASCADE). The main advantage of this code compared
to the CASCADEone is that it gives the dispersion relation
directly and with only a small number of modes, resulting in
respectable savings on CPU time. Furthermore, in cases when
the imaginary part of permittivity is not too large, neglecting
this part has been seen not to affect the dispersion relation.
The results obtained indicate the possibility of extending this
method to more complicated cases, such as modes with no
azimuthal symmetry.
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